Forecasting a Realistic Electricity Infrastructure Buildout for Medium- & Heavy-Duty Battery Electric Vehicles

San Fra

FINAL REPORT

March 18, 2024

Roland Berger

Contents

This document shall be treated as confidential. It has been compiled for the exclusive internal use by our client and is not complete without the underlying detailed analyses and the oral presentation.

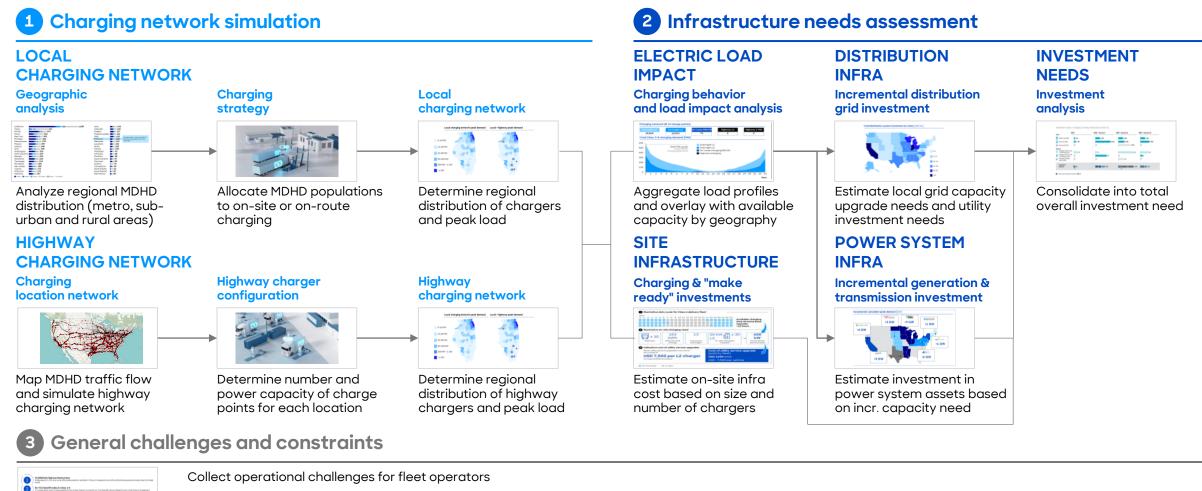
© Roland Berger

A. Overview of methodology	3
B. Results and key takeaways	13
B.1 Current technology	14
B.2 Improved technology	24
C. Other operational challenges	42

A. Overview of methodology

Objective of this study is to estimate the investment need for the buildout of the infrastructure required to support full electrification of the U.S. MDHD fleet

Objectives of this study


Determine the **total investment need** for the buildout of

- electricity distribution and vehicle charging infrastructure
- electricity generation and transmission infrastructure

to support **100% battery electric vehicle (BEV) penetration** in the **U.S. MD and HD CV fleet** and **compare to historic investment rates** (where available).

Highlight **current challenges and constraints** in terms of **funding** of the infrastructure buildout, **permitting**, **charging service provider availability** as well as **practical challenges** of fleets.

We simulated charging networks for MDHD vehicles and analyzed implications for the electricity generation, transmission and distribution infrastructure

Identify other challenges and constraints to the infrastructure buildout

Two fundamental charging location types exist: on-site and on-route local charging and on-route highway charging for long-haul vehicles

Types of charging locations and strategies

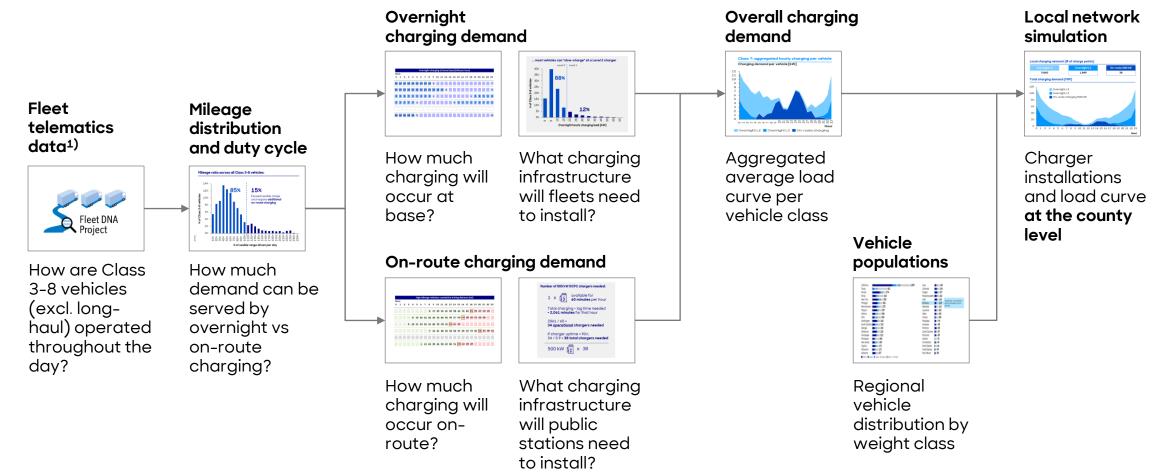
Location			Highway charging	
Strategy	On-site charging		On-route charging	
Description	Private chargers installed at fleet's owned depot location	Shared charging hubs with dedicated availability for fleet customers	Fully public-access chargers for on-route or destination use	Fully public-access chargers along the highway network
Typical fleet characteristics	Large national fleets with sufficient depot infrastructure	Small to medium sized fleets with insufficient depot characteristics	Used by various fleet types (esp. for high- mileage use cases)	Used by <mark>long-haul</mark> vehicles (trucks and OTRBs)
Charger configurations ¹⁾	Level 2 Level 3 DCFC (limited cases)	Level 2 Level 3 DCFC (limited cases)	DCFC	DCFC

1) Level 2 charging refers to AC chargers less than 20 kW. Level 3 refers to DC chargers 50-150 kW. DCFC refers to DC fast chargers 350 kW and above.

Source: Interviews with market participants; Roland Berger Analysis

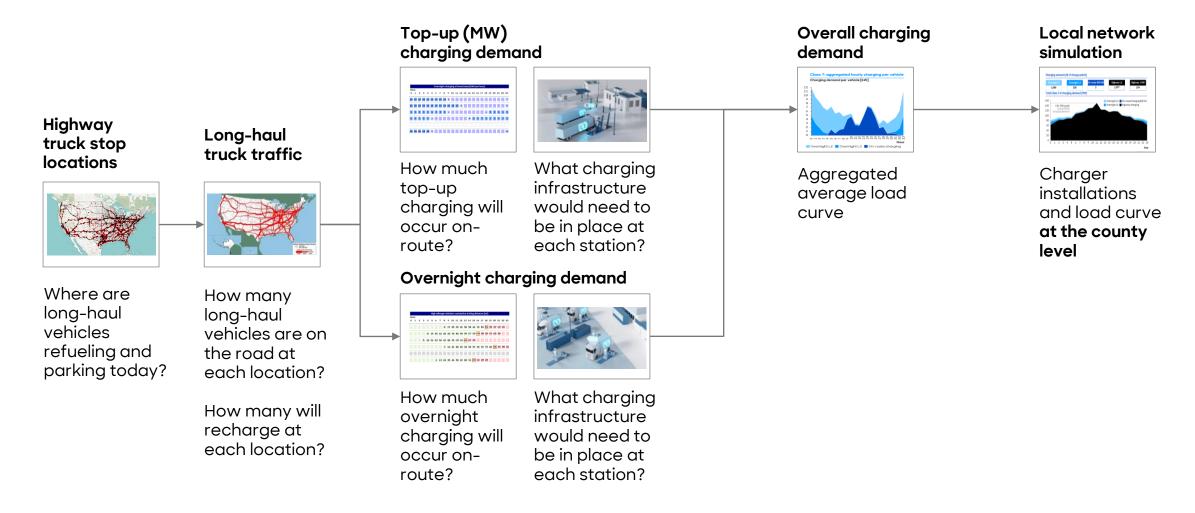
Within the MDHD population, we categorized four broader use case segments that can be mapped to the different charging location types

Use case segments


Vehi	cle count:		Medium Duty	y (Class 3-6)	Heavy Duty (Class 7-8)		
Millio	Million vehicles Use case		1 Local 2 Local		3 Local	4 Long-haul	
8 ₇	7.9	segment	(low mileage)	(high mileage)			
7 -		Description	MD vehicles (e.g., P&D, utility service,	MD vehicles (e.g., P&D, utility service,	All other Class 7-8 vehicles (e.g.,	Over-the-road vehicles primarily	
6 -			school buses, walk in	school buses, walk in	drayage,	running longer inter-	
5 -			vans) where daily driving distance	vans) where daily driving distance	distribution)	regional routes, incl. trucks and OTRB	
4 -			does not exceed usable range of BEV	exceeds usable range of BEV			
3 -		Charaina	On site at denot	On site at depat	On site at denot	Both top up and	
2 -		Charging locations	On-site at depot locations	On-site at depot locations, in addition	On-site at depot locations, in addition	Both top-up and overnight charging	
1 -				to on-route charging at public locations	to on-route charging at public locations	at highway truck stop locations	
₀ ⊥							
C	class 3 📃 Cla	ss 4 📃 Class 5 📃	Class 6 📕 Class 7 📕 Clas	ss 8			

Note: Simulations are based on today's fleet size, except for long-haul trucks. The incremental weight of batteries results in a payload penalty. Trucks that weigh out today would exceed the maximum GVW limit and additional truck capacity is needed to carry the same amount of freight. For each diesel long-haul truck today, ~1.1 battery electric trucks will be needed.

Source: US Census Bureau; Roland Berger Analysis


For the local charging network, we analyzed where, when, and how much vehicles will charge, to determine the charging network and load profile

Methodology for local charging network and load profile analysis

For long-haul vehicles we modeled a highway charging network that provides top-up charging capabilities and overnight charging

Methodology for highway charging network and load profile analysis

Our analysis focuses on characterizing the investment needs and challenges across both charging infrastructure and energy infrastructure

Investment landscape analyzed in this study

		Ch	Charging infrastructure			astructure
	Not in scope		"Make ready"	infrastructure		
	Vehicle	Charger	Site	Electric service	Distribution grid	Generation/ transmission
Investment need	BEV purchase	Charger cost & installation	Civil & electrical	Utility service upgrade	Increased grid capacity	New power system assets
Capital outlay	Fleets	Fleets Developers	Fleets Developers	Fleets Developers Utilities	Utilities	Utilities, IPP's and developers
Subsidies or public funding (including utility rate base)	 Federal EV tax credit State incentives 	 Federal EVSE tax credit State rebate programs 	• N/A	 Utility-side make ready support in some states 	 Federal funding available in some cases 	 Federal funding available in some cases
		65		•.•		

We looked at two alternative scenarios: Electrification based on currently available technology and electrification based on improved technology

Technology scenarios

	Current technology	Improved technology
BEV adoption	Full electrification of Class 3-8 vehicles	Full electrification of Class 3-8 vehicles
Scenario definition	Assuming performance characteristics of today's commercially available vehicles and charger products	Assuming improved capabilities based on reasonably expected performance improvement in the medium-term
BEV range	Based on today's commercially available Class 3-8 BEV models Max. Class 8 range: 180 mi¹⁾	Increased range for Class 6-8 vehicles due to improved battery density Max. Class 8 range: 250 mi
Maximum fast-charging capacity	350 kW	500 kW (local) 1 MW (highway)

Based on currently available Class 3-8 models, we derived assumptions for battery size, "spec" range, and "usable" range and projected future performance

Vehicle assumptions by class

		Current technology			Improved technology			
	Example vehicles	Mileage efficiency [kWh/mi]	Battery ca- pacity [kWh]	OEM spec range [mi]	Usable range [mi] ¹⁾	Battery ca- pacity [kWh]	OEM spec range [mi]	Usable range [mi] ¹⁾
Class 3	Rivian, Ford eTransit, MB eSprinter	0.7	100	150	90	100	150	90
Class 4	Workhorse W4CC	0.7	100	150	90	100	150	90
Class 5	Freightliner Mt50e, Workhorse W56	1.5	100	150	90	100	150	90
Class 6	Kenworth, Navistar eMV, Freightliner eM2	1.3	218	163	98	305 ²⁾	228	137
Class 7	Kenworth, Navistar eMV, Freightliner eM2	1.3	218	163	98	305 ²⁾	228	137
Class 8	Freightliner eCascadia, Volvo VNR	2.0	440	220	132	616 ²⁾	308	185
Long- haul	No electric long-haul truck in series production today. Range estimate based on the Daimler eActros 600 ³	is 2.0	600	300	180	850 ²⁾	420	250

1) "Usable range" assumes the battery never falls below 20% SOC, and is never charged above 80% SOC

2) Assumed improvement in gravimetric density: 40%; OEMs use improvement to increase range while keeping battery weight constant

3) European model, also expected to become available in the US; specs for currently available OTRBs (e.g. Van Hool CX45E) comparable to RB assumptions

Source: OEM websites, Roland Berger analysis

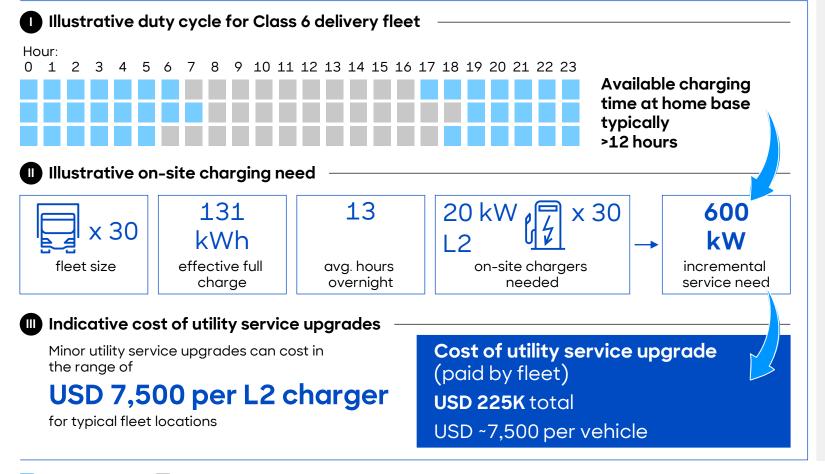
B. Results and key takeaways

B.1 Current Technology

We analyzed the infrastructure needs and challenges to the electrification of medium- and heavy-duty CVs in the current technology scenario

Technology scenarios – Focus of this section

	Current technology	Improved technology
BEV adoption	Full electrification of Class 3-8 vehicles	Full electrification of Class 3-8 vehicles
Scenario definition	Assuming performance characteristics of today's commercially available vehicles and charger products	Assuming improved capabilities based on reasonably expected performance improvement in the medium-term
BEV range	Based on today's commercially available Class 3-8 BEV models Max. Class 8 range: 180 mi¹⁾	Increased range for Class 6-8 vehicles due to improved battery density Max. Class 8 range: 250 mi
Maximum fast-charging capacity	350 kW	500 kW (local) 1 MW (highway)
	Focus of this section	

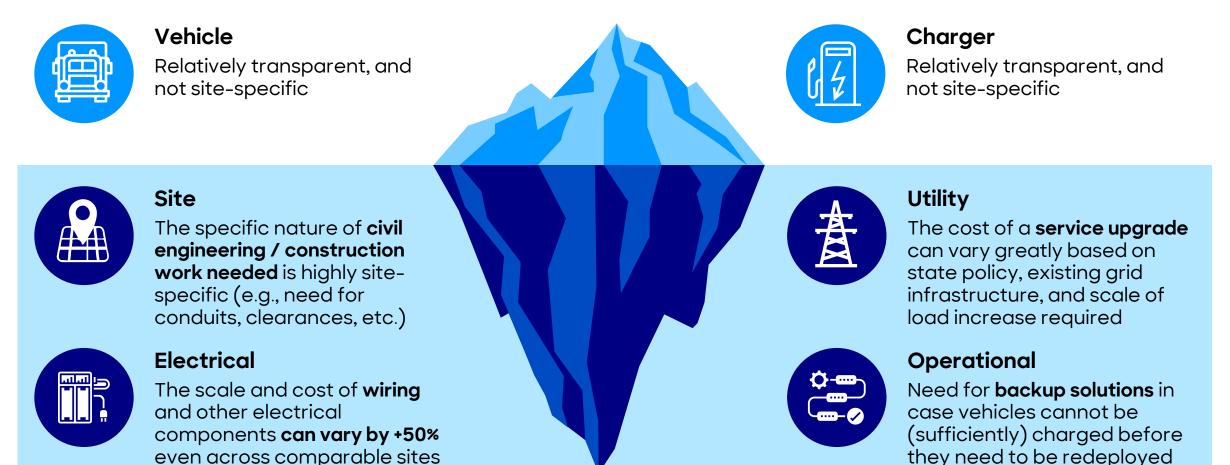

With the current technology landscape, only low mileage medium-duty vehicles are feasible to electrify; High mileage & heavy duty use cases face major hurdles

Charging infrastructure challenges – <u>Current technology scenario</u>

	Vehicle cost/TCO not in scope of analysis	C	harging infrastructu	ıre	
Use case segment	Vehicle	Charger	Site	Electric service	Key findings
1 Medium duty - local (low mileage)	Vehicle cost still high, but getting more cost competitive for some use cases	On-site Level 2 chargers sufficient and available at low cost	Upgrade cost is highly site-specific and can be substantial	Minor service upgrades for smaller fleets More extensive service upgrades for larger fleets	Smaller, low mileage fleets with least challenges, but still require significant upfront investment
2 Medium duty - local (high mileage)	Vehicle cost still high, but getting more cost competitive for some use cases	Only feasible with sufficiently dense on-route charging network	Upgrade cost is highly site-specific and can be substantial	Minor service upgrades for smaller fleets More extensive service upgrades for larger fleets	High mileage medium duty vehicles cannot electrify before a substantial buildout of on-route charging occurs
3 Heavy duty - local	Prohibitively high vehicle cost (>2X of diesel) negatively impact TCO	High upfront cost for Level 3 and DCFC units	Highly site- specific costs	Expensive utility service upgrades	Heavy-duty local fleets face high upfront costs for chargers and utility service upgrades
4 Heavy duty - long haul	Prohibitively high vehicle cost (>2X of diesel) negatively impact TCO	Time penalty from on-route charging negatively impact TCO	Parking/space constraints at on- highway charging locations	Long lead time for inter- connection	Long-haul vehicles require increased range AND very high capacity chargers to reduce charging times

Low mileage medium-duty vehicles will not need on-route charging, and can use Level 2 chargers on-site, minimizing charger and make-ready investments

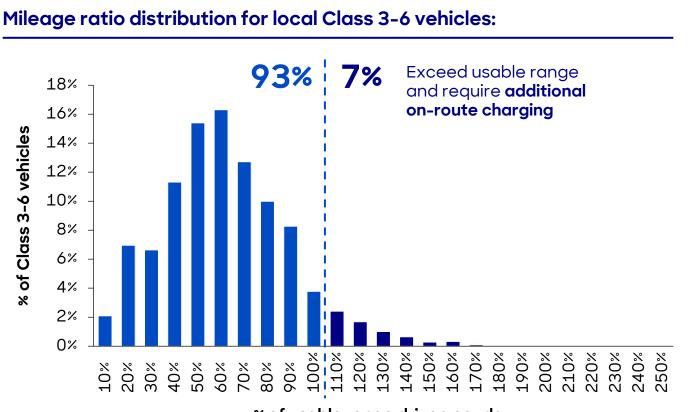
Illustrative charging and utility service need for <u>MD local fleet (low mileage)</u>


However, for depot locations with a larger number of vehicles, a more extensive service upgrade may be needed ...

- This same example fleet, if it consisted of 150 vehicles instead of 30, would require a 3 MW service level
- For individual sites requiring significant power capacity (~ 1 MW and above), utilities may need to upgrade more upstream infrastructure (e.g. feeder segments, larger transformers), which can translate into much larger investment need on a per vehicle basis
- These costs are highly variable, depending on existing infrastructure

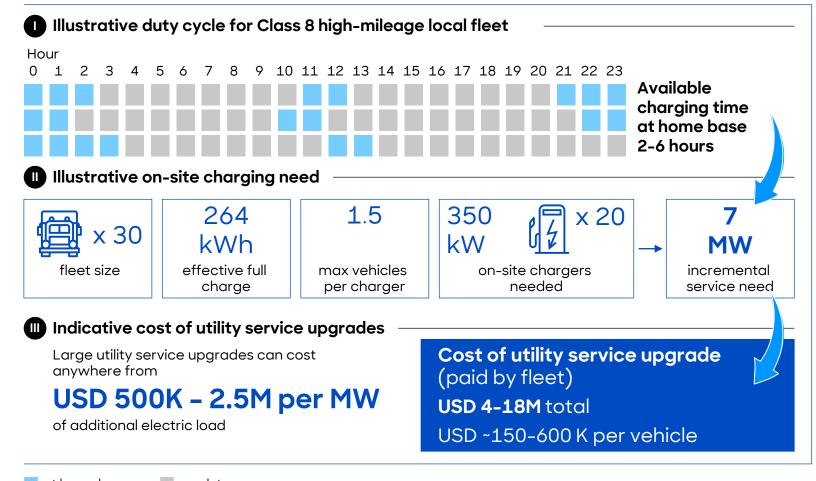
at home base 👘 on-duty

However, regardless of charger capacity, there are several sources of hidden or unforeseen costs that can greatly increase upfront investment for fleets


Hidden cost of depot electrification

For local medium-duty fleets, a small share of vehicles are "high mileage" use cases – these vehicles cannot electrify without an on-route charging network

Daily mileage requirement vs. range for <u>MD local fleet (high mileage)</u>

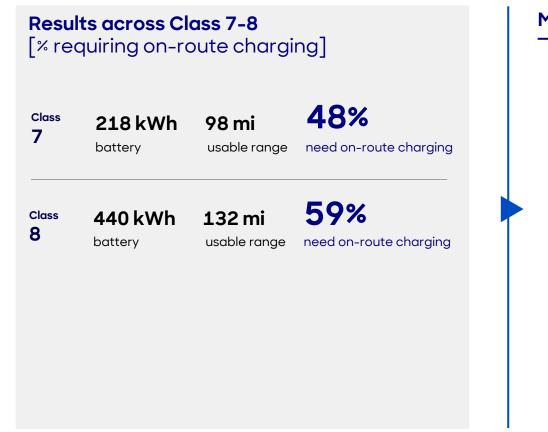


% of usable range driven per day

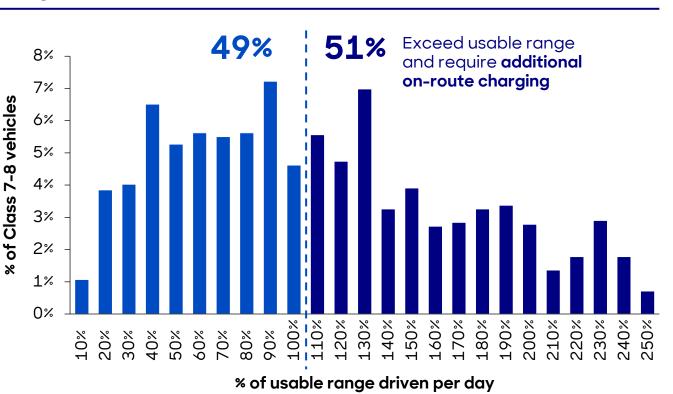
For many local HD use cases, fleets would need high capacity L3 or DCFC chargers on-site, but just the cost of utility service upgrades can be prohibitive

Illustrative charging and utility service need for <u>HD local fleet</u>

For HD local fleets, the potential paths to electrification all involve significant cost and risk:

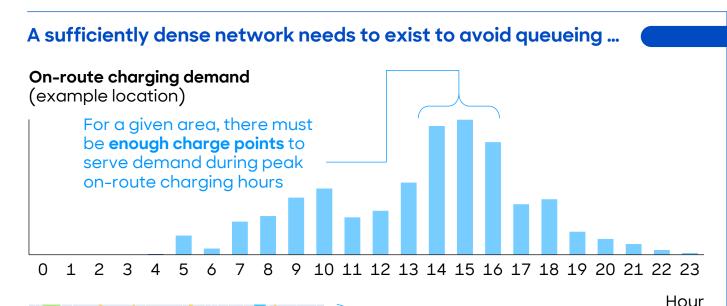

- If high-capacity charging is prohibitive because of utility cost, there are no good alternatives for fleets:
- Charging vehicles at lower rates will require additional vehicles to ensure continued operation
- Rely heavily on public charging (at higher electricity rates and additional operational risk)
- In all cases, the incremental cost needs to get passed down to customers, or negatively hits the profitability of fleets

To remove this roadblock, regulators would need to approve use of ratepayer funding for service upgrades and other "make ready" investments, <u>removing the</u> <u>burden from individual fleets</u>


at home base 📃 on-duty

At today's vehicle range, half of the heavy-duty local fleet would exceed the usable range of BEVs, and require access to on-route fast-charging

Daily mileage requirement vs. range for HD local fleet

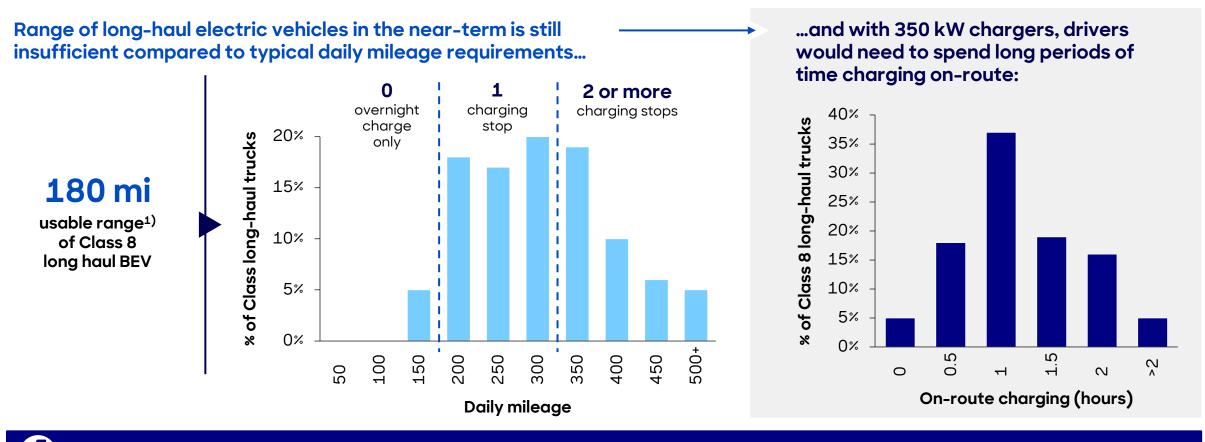


A reliable local on-route charging network must exist <u>before</u> high mileage vehicles can electrify, but utilization risk poses a major challenge to investment

Challenges and investment hurdles for on-route charging

Further, those charge points must be geographically dispersed such that they **align with fleet traffic volumes and existing routes**

... but the investment case to develop such a network is very challenging ...


- Timing & adoption: given that significant adoption of high-mileage vehicles will not occur before a sufficient network exists, there is a "first mover disadvantage"
- Utilization & economics: at full density, individual locations may see low utilization rates, which would require large price premiums at the plug (which fleets would have to absorb)

- Economic support may be required to overcome utilization risk
- Concern over utility ownership of public charging
 infrastructure remains a key regulatory uncertainty

Long-haul vehicles, at current range and charging levels would incur a downtime penalty of 1-2 hours per day from top-up charging, negatively impacting TCO

Suitability of current technology¹⁾ electric trucks for long-haul

Electrification of long-haul use case not feasible with current technology due to high uptime penalty from charging

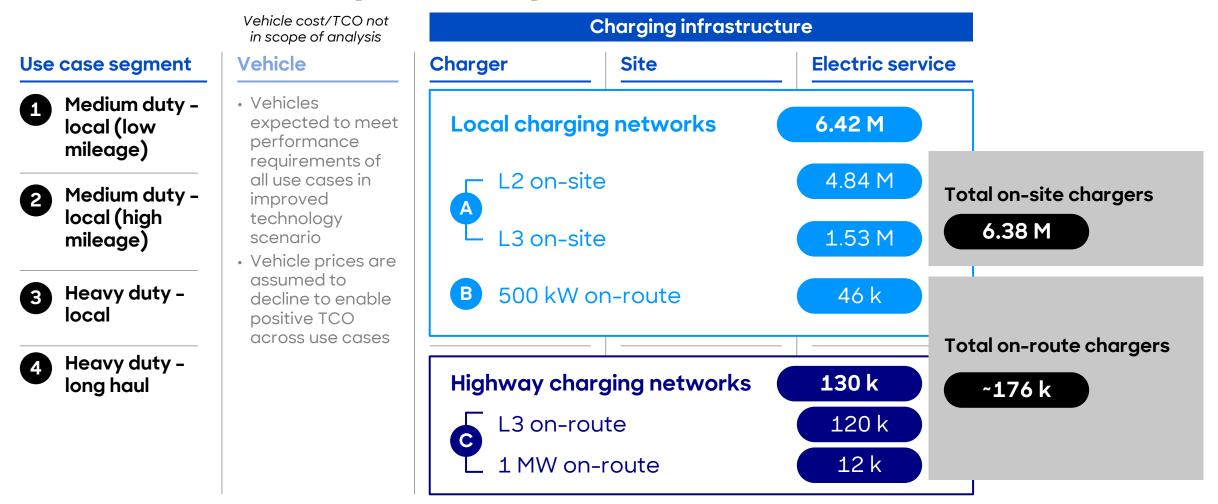
1) Currently no electric long-haul truck in series production. Range estimate is based on the Daimler eActros 600 (European model, also expected to become available in the US). Assumes 80%-20% SOC

Source: 2021 VIUS (Vehicle In-Use Survey) - US Census; Roland Berger analysis

In the advanced technology scenario, vehicle range is expected to increase, esp. for long-haul vehicles and higher-capacity chargers are expected to be available

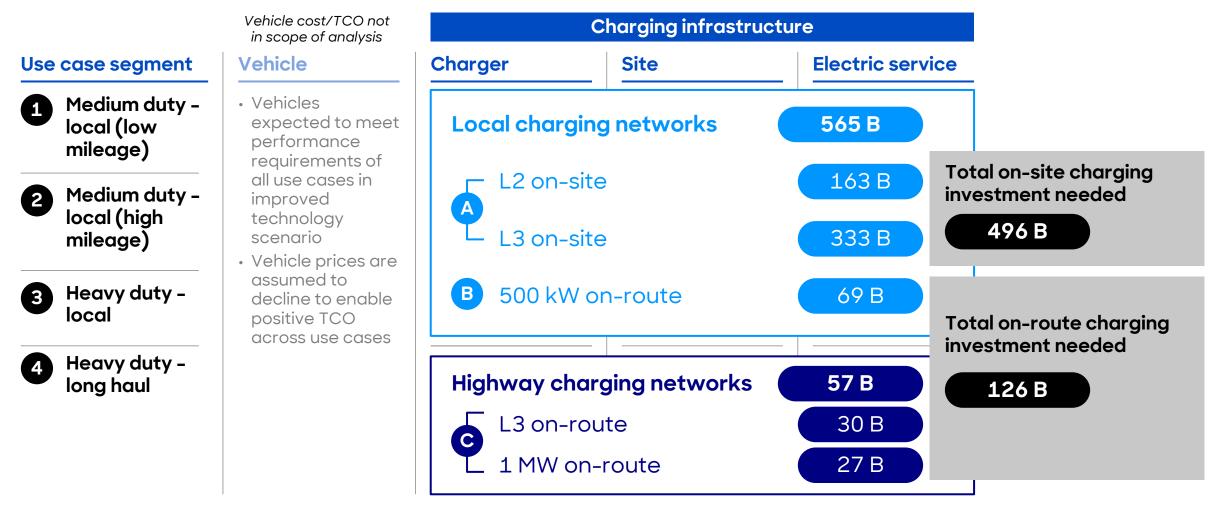
Technology scenarios – Focus of this section

	Current technology	Improved technology
BEV adoption	Full electrification of Class 3-8 vehicles	Full electrification of Class 3-8 vehicles
Scenario definition	Assuming performance characteristics of today's commercially available vehicles and charger products	Assuming improved capabilities based on reasonably expected performance improvement in the medium-term
BEV range	Based on today's commercially available Class 3-8 BEV models Max. Class 8 range: 180 mi¹⁾	Increased range for Class 6-8 vehicles due to improved battery density Max. Class 8 range: 250 mi
Maximum fast-charging capacity	350 kW	500 kW (local) 1 MW (highway)
		Focus of this section

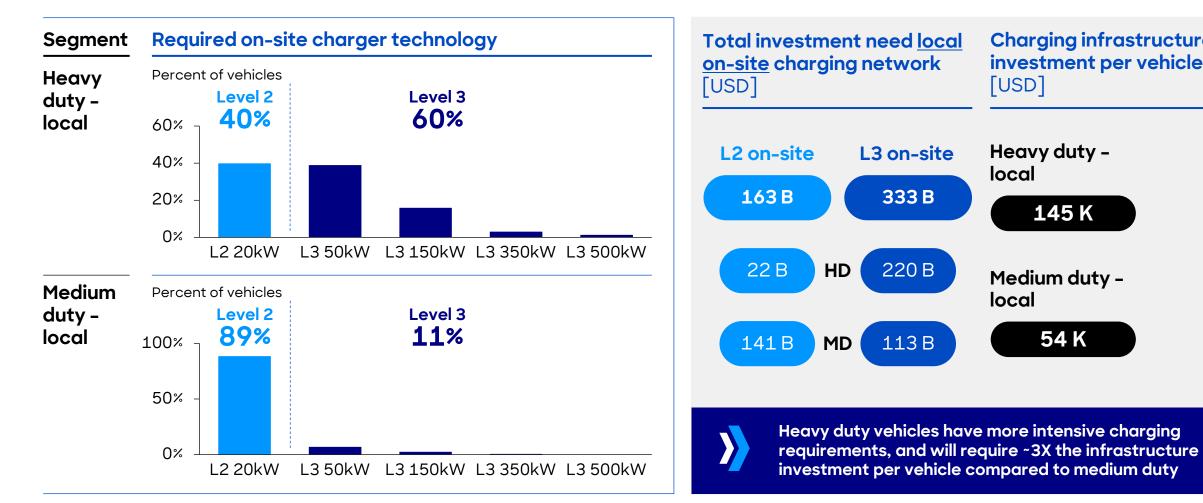

Even with improved vehicle and charger technology, fleets and charging location developers face many challenges related to charging infrastructure

Charging infrastructure challenges - Improved technology scenario

	Vehicle cost/TCO not in scope of analysis	C	Charging infrastructu	ıre	
Use case segment	Vehicle	Charger	Site	Electric service	Key findings
Medium duty - local (low mileage)	 Vehicles expected to meet performance requirements of 	On-site Level 2 chargers sufficient and available at low cost	Upgrade cost is highly site-specific and can be substantial	Minor service upgrades for smaller fleets More extensive service upgrades for larger fleets	Smaller, low mileage fleets with least challenges, but still require significant upfront investment
2 Medium duty - local (high mileage)	all use cases in improved technology scenario • Vehicle prices	Only feasible with sufficiently dense on-route charging network	Upgrade cost is highly site-specific and can be substantial	Minor service upgrades for smaller fleets More extensive service upgrades for larger fleets	High mileage medium duty vehicles cannot electrify before a substantial buildout of on-route charging occurs
3 Heavy duty - local	are assumed to decline to enable positive TCO across use cases	High upfront cost for Level 3 and DCFC units	Highly site- specific costs	Expensive utility service upgrades	Heavy-duty local fleets face high upfront costs for chargers and utility service upgrades
4 Heavy duty - long haul		Only feasible with sufficiently dense highway charging network	Parking/space constraints at on- highway charging locations	Long lead time for transmission interconnection	Long-haul vehicles require increased range AND very high capacity chargers to reduce charging times


About 6 m on-site charges and ~176 k on-route chargers will be needed to support full electrification of the US medium and heavy-duty vehicle fleet

Charging infrastructure needs [charger counts]


To deploy all of this infrastructure, fleets and charge point operators will need to invest USD 620 billion into chargers, site infrastructure, and utility service costs

Charging infrastructure investment needs

The total investment need for local on-site charging of USD 496 B is driven primarily by the heavy-duty segment requiring Level 3 charging

Investment need for local on-site charging network

Charging infrastructure

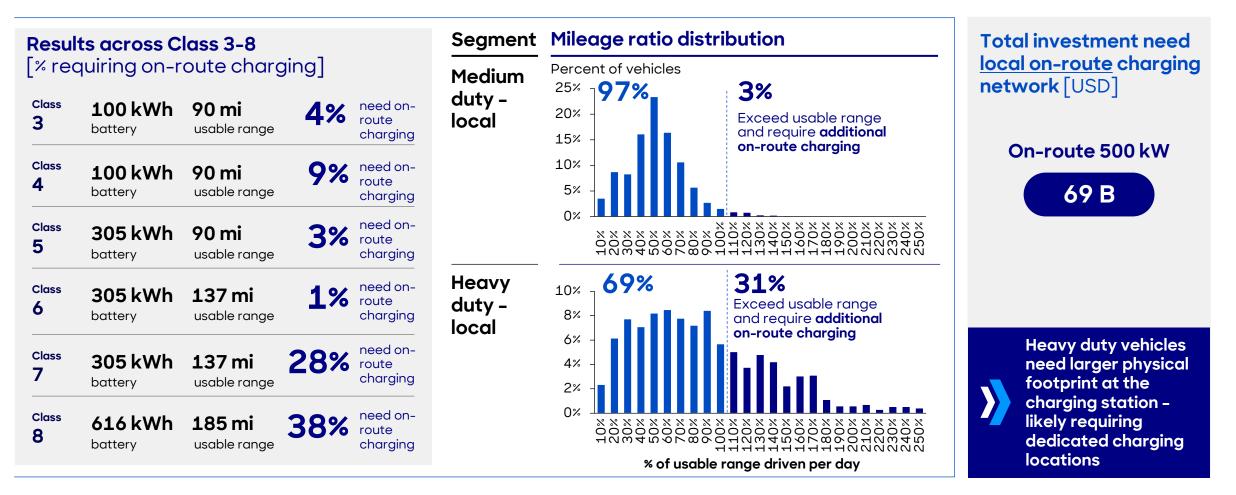
investment per vehicle

[USD]

local

local

Heavy duty -


145 K

Medium duty -

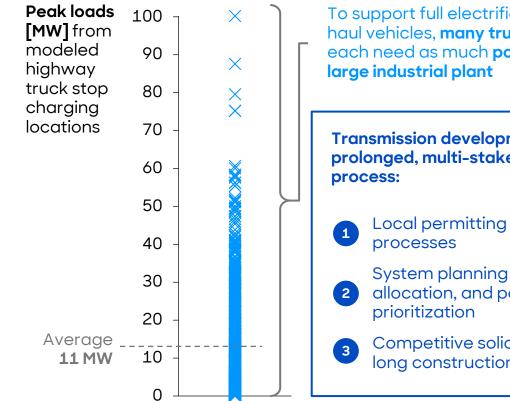
54 K


Even with improved technology, a significant share of the HD local fleet requires access to on-route fast-charging locations, driving investment need of USD 69 B

Investment need for <u>local on-route charging network</u>

To support full electrification of long-haul vehicles, USD 57 bn need to be invested in converting truck stops into a sufficiently dense charging network

Investment need for <u>highway charging network</u>



Traffic volume of long-haul combination trucks at simulated charging locations (charging stations will also be utilized by OTRBs)

Investment in highway charging will be challenged by very long lead times for transmission infrastructure development and regulatory/planning processes

Highway charging network deployment hurdles

Highway charging depends on transmission infrastructure:

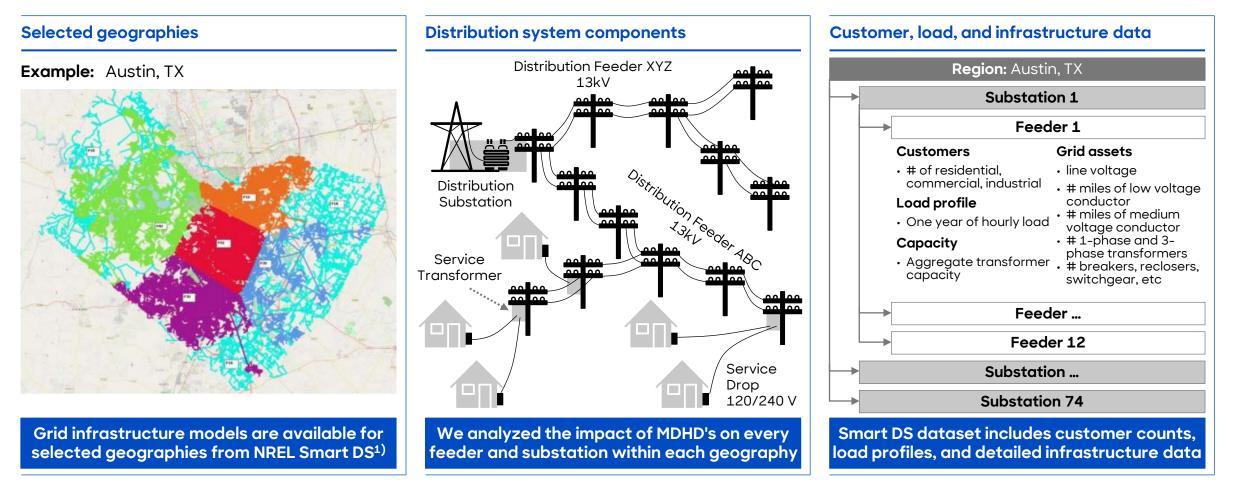
To support full electrification of longhaul vehicles, many truck stops would each need as much power supply as a

Transmission development is a prolonged, multi-stakeholder

Local permitting & approval

System planning studies, cost allocation, and portfolio

Competitive solicitation and long construction lead times


While charger installation can be completed in a matter of months, larger transmission interconnections and upgrades can take anywhere from 3-8 years to approve and construct

Additional challenges:

- Land and parking space constraints: Overall space requirements for tractor-trailers and OTRBs significantly higher compared to conventional fueling stations, given 2-3x number of ports
- Technology obsolescence: Earlier generation chargers (less than 1 MW) will eventually become obsolete once MW charging network is in place

We ran a detailed analysis of distribution grid impact and investment need for select geographies across CA, TX, and NC – covering rural and urban areas

Methodology for distribution grid impact analysis (1/2)

1) Analysis was run on NREL Smart DS simulated distribution grid architecture and customer load datasets for Austin TX, Greensboro NC, and Northern California regions

Source: NREL, Roland Berger analysis

We simulated the impact of MDHD charging on existing grid infrastructure, and estimated the "overnight cost" of increasing capacity of impacted grid assets

Methodology for distribution grid impact analysis (2/2)

eeder-level load impact	Capacity expansion options		Cost of upgrade or new build				
Example of an impacted feeder:	Feeder level:	Feeder a	Feeder architecture (non-exhaustive):				
Headroom: 32%	1 Reconductoring Replace overloaded lines and equipment with higher voltage rating	Low voltage conductor	Medium voltage conductor	3-phase trans- formers	Reclosers		
	If reconductoring is insufficient:	24.4	14.1	48	2	•••	
		miles	miles	units	units		
0400400000444444444444444	2 New build Add new circuits to distribute load	Equipment + installation costs:					
Hour 6 New peak load ¹): 5.5 MW 4 Capacity: 3.1 MW Overload: 77%	Substation level: If reconductoring any downstream feeders:	Low voltage conductor	Medium voltage conductor	3-phase trans- formers	Reclosers		
4 - Capacity: 3.1 MW Overload: 77%	3 Transformer upgrade Add/replace to manage increased voltage	0.6 M USD/mi	1.3 M USD/mi	81 K USD/unit	126 K USD/unit	•••	
	If total downstream feeder load exceeds	Cost of reconductoring (non-exhaustive):					
Ноп. 0	substation capacity:Substation rebuild	O USD	18 M USD	4 M USD	250 K USD	••••	
Ve layered MDHD charging onto existing load or each feeder to determine impacted assets	There is a limited solution set for utilities to expand capacity of impacted grid assets				each feede ach upgrad		

Existing load 1) County level results for MDHD charging load profile were distributed across each underlying feeder by analyzing the distribution of commercial and industrial customers Local MDHD charging

We analyzed the grid impacts and investment need for each of the counties within our grid dataset, to determine investment needed on a "per vehicle" basis

Distribution grid investment per vehicle

Example: distribution investment analysis [Lake County, CA]

For each region, we analyzed the impacts of MDHD charging on all of the grid assets located within each individual county...

	Loading ¹⁾ [%]	Recond- uctoring [USD]	Feeder new build [USD]	Transformer upgrade [USD]	Substation rebuild [USD]
Substation 1	78%			4 M	
Feeder 1	169%	11 M	0		
Feeder 2	426%	25 M	42 M		
Feeder 3	66%	0	0		
•••					
Substation 2	165%				13 M

...to determine the county-level distribution investment need:

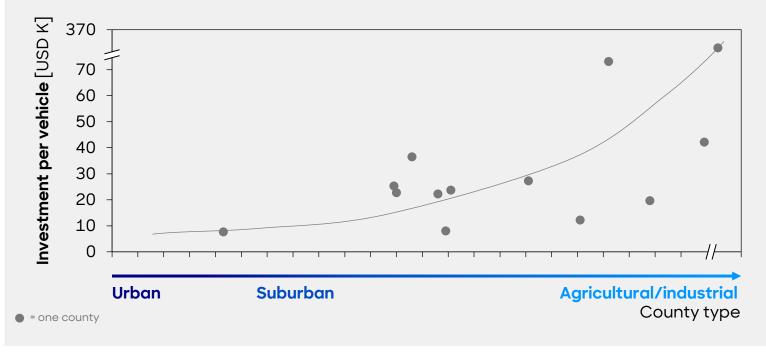
Lake
County, CA16.5 M
Feeder investment
[USD]98 M
Substation investment
[USD]115 M
Total distribution
investment [USD]

1) A grid asset is considered "overloaded" and in need of intervention if peak loading is at or above 95%

Source: NREL, US Census, Roland Berger analysis

For each county analyzed, we determined the total distribution investment need on a "per vehicle" basis:

	Total distribution investment [USD M]	Class 3-8 vehicles [count]	Distribution investment per vehicle [USD K]
Guilford County, NC	204	16,703	12
Travis County, TX	486	19,256	25
Solano County, CA	859	11,752	73
Lake County, CA	115	1,020	113



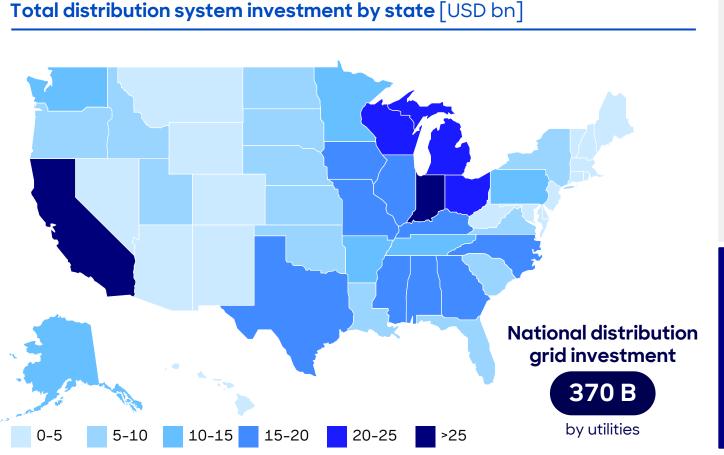
Investment need per vehicle varies significantly across geographies, but this variation is predictable by specific factors (see next page)

In more rural and industrial areas, utilities will need to spend more per vehicle we quantified this relationship to extrapolate these results to other geographies

Key drivers of variation in distribution investment – rural vs urban

Key drivers of variation:

 In more rural geographies, the average distance between customers is much greater than in dense urban areas, requiring more miles of conductor when replacing or upgrading grid capacity in these regions


We applied this correlation¹⁾ to determine the "per vehicle" investment need for all other US counties

1) Predictor variable used for correlation is the % share of total county-level employment in agriculture, construction, and manufacturing sectors

Source: NREL Smart DS, US Census CBP, Roland Berger analysis

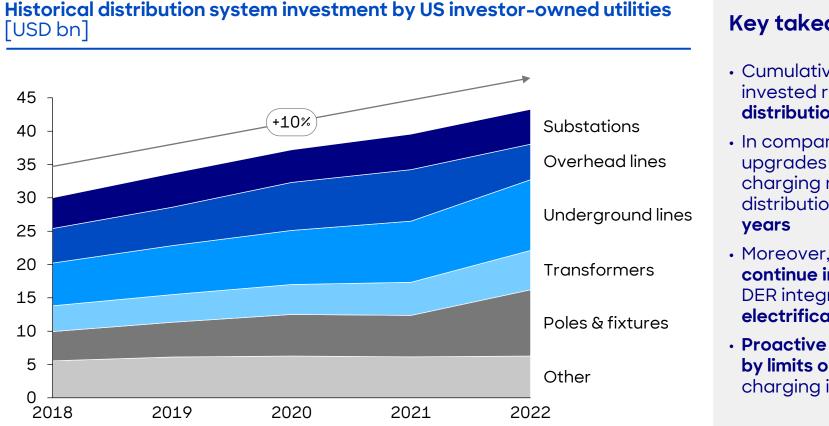
Nationally, utilities will need to invest around USD 370 billion¹⁾ on distribution grid upgrades and new builds to serve <u>local charging</u> demand²⁾ from MDHD vehicles

Distribution system investment need - nationwide

Challenges and constraints:

- Utilities will need to build infrastructure ahead of demand <u>ahead</u> of MDHD adoption to avoid bottlenecks and delays
- However, these investments require more sophisticated grid planning as well as regulatory support – both limited to date
- The overall pace of utility investment will still be constrained by the need to control rate increases and maintain affordability

Potential mitigating factors:

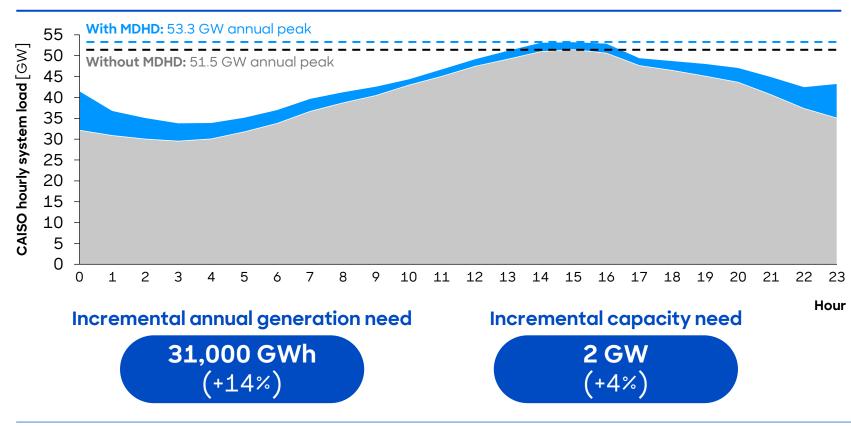

- This analysis shows the grid impacts and investment need given "unmanaged" charging
- If fleets were able to shift or manage peak charging load (e.g. with battery-integrated chargers), utility investment could be significantly reduced
- However, **appropriate incentives** and/or price signals would need to exist **to support fleet economics**

1) Based on "overnight" capital cost of grid infrastructure at current price levels - actual utility investment will be higher due to 1) price inflation of labor and equipment, and 2) Utility guaranteed rate of return 2) Distribution grids will serve on-site and on-route charging demand from local fleets - long-haul vehicles/ highway charging stations will be served by the transmission grid and bulk power system

Source: NREL, US Census, Roland Berger analysis

Just to support MDHD charging, utilities would need to spend nearly the equivalent of what was spent on the entire system during the past 15 years

Distribution investment – comparison to historical investment rates

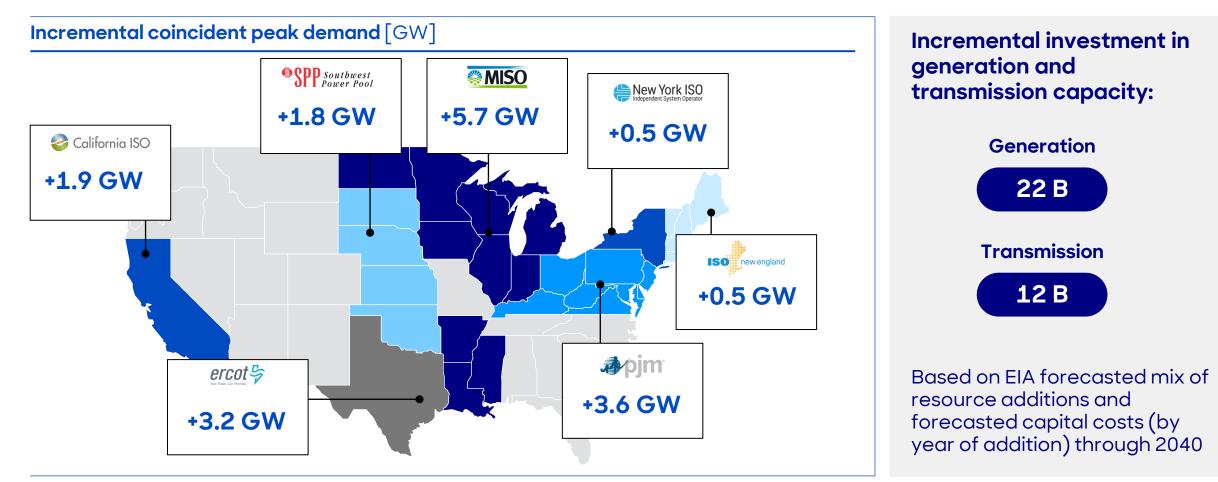

Key takeaways:

- Cumulatively over the last 15 years, utilities invested roughly USD 450 B across the US for all distribution investment needs
- In comparison, the estimated 370 B just for uparades and new construction related to MDHD charging represents 82% of what was spent on all distribution grid investments over the past 15
- Moreover, distribution spending is expected to continue increasing across multiple priorities (e.g. DER integration, resiliency), of which MDHD electrification is just one competing priority
- Proactive investments will likely be constrained by limits on rate increases, potentially delaying charging infrastructure buildout

At the power system level, the impact of MDHD charging on peak energy demand is diminished, as most charging occurs overnight – avoiding the system peak

Impact of MDHD charging on bulk power system (CAISO example)

California ISO: impact of MDHD charging on annual peak load [hourly load during annual system peak day, GW]



Generation vs capacity needs:

- MDHD charging will require a meaningful increase in energy generation
- However, charging will have a less significant impact on <u>system</u> <u>capacity requirements</u>, which are primarily a function of peak energy demand across a region
- The level of investment in generation and transmission resources for a given region is driven by system capacity requirements
- Whereas increased energy generation need typically translates into increased utilization of existing resources

While there will be some incremental capacity need (and investment need) created by MDHD charging...

MDHD charging - impact to annual system peak load by ISO

...power system operators are already planning for significant generation and capacity growth from transportation electrification, as well as from other trends

MDHD load impact vs ISO forecasts of overall load growth

	Generation				Capacity			
ISO region	2022 annual generation [GWh]	MDHD charging [GWh]	Increase from MDHD [incremental % of 2022]	2040 ISO load forecast [incremental % of 2022]	2022 peak load [GW]	MDHD peak impact [GW]	Increase from MDHD [incremental % of 2022]	2040 ISO load forecast [incremental % of 2022]
Spp Southwest Power Pool	283,187	19,932	7%	48%	53	1.8	3%	26%
MISO	665,254	64,493	10%	17%	120	5.7	5%	18%
∌ ∕pjm	795,214	45,998	6%	39%	148	3.6	2%	20%
🍣 California ISO	223,677	30,980	14%	68%	52	1.9	4%	42%
ISO new england	118,887	8,180	7%	46%	25	0.5	2%	72%
Rer Cost	429,895	31,556	7%	58%	80	3.2	4%	29%
New York ISO	152,681	8,284	5%	34%	31	0.5	2%	44%
	Historical	RB estimate	RB estimate	ISO forecast	Historical	RB estimate	RB estimate	ISO forecast

Source: ISO long-term load forecasts, Roland Berger analysis

C. Other operational challenges

In addition to the economic hurdles, regulatory constraints, and operational challenges already discussed, further challenges still need to be addressed

Additional operational challenges raised by fleet operators

Prohibitively high purchase prices

While electric LCVs are more affordable, electric vehicles in Class 6-8 segment are still prohibitively expensive today due to limited scale

No TCO benefit today in Class 6-8

In combination with increasing electricity prices, there is currently no TCO benefit versus Diesel trucks in the Class 6-8 segment

Tank truck segment especially hit by incremental battery weight

Certain use cases, esp. in the tank truck industry weigh out before they cube out and incremental battery weight leads to a payload penalty. Without the ability to increase current thresholds (bridge formula), fleets will be forced to absorb the cost

Vehicle portfolio still immature

Limited choice of vehicles with many coming from startups without sufficient track record and unclear service support offering

Drivers need to get compensated during charging times

Drivers will need to get compensated if they have to wait for vehicles being charged during their hours-of-service window. Lower driver utilization negatively impact fleet profitability or drives up freight rates

